Ab initio molecular dynamics applied to liquid water systems

Henrik H. Kristoffersen

Funding:

Outline

Molecular dynamics

Examples: Simulated annealing, Reaction energies

Rare event sampling

Examples: Meta dynamics

Why molecular dynamics?

Basic issue, liquid water is not a ground state structure

 $H_2O(s) \rightarrow H_2O(l) \quad \Delta_{fus}H^0 = 0.06 \text{ eV}$

Why molecular dynamics?

Basic issue, liquid water is not a ground state structure

 $H_2O(s) \rightarrow H_2O(l) \quad \Delta_{fus}H^0 = 0.06 \text{ eV}$

We need a method that can capture the dynamic nature of liquid water

Constant energy molecular dynamics

Newtonian dynamics

$$\frac{dp_i}{dt} = F_i$$

Atomic forces (F_i) can be obtained from *ab initio* methods such as DFT or *non ab initio* methods such as interatomic potentials.

Constant energy molecular dynamics

Can be used to study:

Structural properties (densities, coordination numbers)

Dynamics (diffusion constants, vibrations)

Rare events (reactions), if they occur

Cannot provide energy differences!

Structural properties

Radial distribution function (Pair correlation function)

S. Sakong, K. Forster-Tonigold, A. Groß, J. Chem. Phys., 2016, 144, 194701

Structural properties

Radial distribution function (Pair correlation function)

Probability of finding a B type atom at *r* from an A type atom.

$$p_{A-B}dr = 4\pi r^2 g_{A-B}(r) \rho_B dr$$

Number of B neighbors within r_{max} from A

$$n_{A-B}(r < r_{max}) = \int_0^{r_{max}} p_{A-B} dr$$

S. Sakong, K. Forster-Tonigold, A. Groß, J. Chem. Phys., 2016, 144, 194701

Dynamic properties

Vibrations

Hydrogen power spectra (*S*). Fourier transform of the self-velocity autocorrelation function

$$S(\omega) = \int_0^\infty \langle v(t)v(0)\rangle \cos(\omega t) \, dt$$

FIG. 11. Normalized hydrogen power spectra for water along the coexistence curve: T=298 K (---), T=403 K (---), and T=523 K (...).

J. Marti, J. A. Padro, E. Guardia, J. Chem. Phys., 1996, 105 (2), 639-649

Dynamic properties

Diffusion

FIG. 7. MSDs as obtained for simulations with the BLYP, PBE, TPSS, OLYP, HCTH120, and HCTH407 functionals using solid, dotted, dashed, long dashed, dash dotted, and long dash dotted lines, respectively.

J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, M. Parrinello, J. Chem. Phys., 2005, 122, 014515

The dynamics is modified by a thermostat (Nosé, Andersen, Langevin, etc.)

Nosé thermostat:
$$\frac{dp_i}{dt} = F_i - \varsigma p_i \qquad \frac{d\varsigma}{dt} = \frac{3Nk_B}{Q}(T - T_0) \qquad T = \frac{2E_{kin}}{3Nk_B}$$

Nosé dynamics has no random components

S. Nosé, J. Chem. Phys., 1984, 81, 511-519

Wm. G. Hoover, Molecular Dynamics: Lecture Notes in Physics, Volume 258, Springer-Verlag, 1986

The dynamics is modified by a thermostat (Nosé, Andersen, Langevin, etc.)

Nosé thermostat:
$$\frac{dp_i}{dt} = F_i - \varsigma p_i$$
 $\frac{d\varsigma}{dt} = \frac{3Nk_B}{Q}(T - T_0)$ $T = \frac{2E_{kin}}{3Nk_B}$

Nosé dynamics has no random components

Trajectory (time) averages become the canonical ensemble averages

$$\lim_{M \to \infty} \frac{1}{M} \sum_{j=1}^{M} E_j = \langle E(T_0) \rangle_{canonical}$$

S. Nosé, J. Chem. Phys., 1984, 81, 511–519

Wm. G. Hoover, Molecular Dynamics: Lecture Notes in Physics, Volume 258, Springer-Verlag, 1986

Temperature and energy fluctuations

S. Sakong, K. Forster-Tonigold, A. Groß, J. Chem. Phys., 2016, 144, 194701

Can be used to study:

Structure properties

Approximate dynamics

Rare events (reactions), if they occur

Simulated annealing (global optimization)

Reactions energies

Example

Structure of $V_2O_5 \bullet nH_2O$ xerogels from simulated annealing

Henrik H. Kristoffersen, Horia Metiu, J. Phys. Chem. C, 2016, 120 (7), 3986-3992

Crystalline V₂O₅

Bulk V₂O₅ is a layered compound

red = bridging O dark red = double bonded V=O gray = vanadium

A.M. Glushenkov, *et al., Crystal Growth & Design*, **2008**, *8*, 3661-3665

$V_2O_5 \bullet nH_2O$ xerogels

"The V₂O₅•*n*H₂O xerogel was synthesized by melting of crystalline V₂O₅ at 800°C and pouring the melt into deionized water under vigorous stirring. The resulting dark red solution transformed to gel within 4 days."

V. Petkov, et al., J. Am. Chem. Soc., 2002, 12, 10157-10162

$V_2O_5 \bullet nH_2O$ xerogels

Structural model based on XRD

V. Petkov, et al., J. Am. Chem. Soc., 2002, 12, 10157-10162

Issue 1: Bilayer stability

 $\Delta E / n_{\rm V_2O_5} = 0 \, \rm eV \, (ref)$

Bilayer in the absence of water:

Higher energy

V-V distance is almost correct

Double layer cut from bulk:

Lower energy

V-V distance is too large

Issue 2: Inherent acidity

H⁺ exchange with cations

J Livage, et al., MRS Proceedings p 167 (1988)

Issue 2: Inherent acidity

H⁺ exchange with cations

Protonation of intercalated pyridine measured by IR

J Livage, et al., MRS Proceedings p 167 (1988)

E. Ruiz-Hitzky, et al., J. Chem. Soc., Faraday Trans. 1, **1986**, 82, 1597-1604

Methodology

Modeling that include both V₂O₅ bilayer and H₂O (8V₂O₅•14H₂O)

Ab initio molecular dynamics with Nosé thermostat

DFT with PBE+D2 performed in VASP

Unit cell and structure optimization

1. Simulated annealing for 10 ps from 600 K to 250 K (fixed unit cell)

2. Full structure and unit cell relaxation (atomic forces < 0.03 eV/Å).

3. Repeat 1. and 2. five times and report the most stable structure.

We conducted several parallel runs of 1.-3., which end up in markedly different structural motifs.

Solution: Water adsorption at bilayer

Models for $V_2O_5 \bullet nH_2O$ xerogels

Example

Reaction energies for water-Pt(111) electro-chemistry

H. H. Kristoffersen, T. Vegge, H. A. Hansen, Chem. Sci., 2018, 9, 6912-6921

Static water bilayer model

The bilayer model is based on the experimental structure for 2/3 ML H₂O on Pt(111) at low T and in UHV.

Computational studies using the bilayer model have made assumptions concerning coverage and structure of H₂O at the interface.

H. Ogasawara, et al., Phys. Rev. Lett. **2002**, 89 (27), 276102.

Methodology

Ab initio, constant temperature Nosé molecular dynamics at 350 K

DFT with PBE+D3 in VASP (vdW important for water properties)

$$\langle E \rangle_t = \frac{1}{t - t_0} \int_{t_0}^t E_{DFT}(t') + K(t') dt'$$

 $t - t_0$ is > 30 ps (with $\Delta t = 1$ fs)

We perform 2 to 3 runs of each interface

Reaction energies for *OH formation

$$\Delta \mathbf{E} = \langle E_{nOH+(32-n)H_2O/Pt(111)} \rangle_t + \frac{n}{2} \langle E_{H_2(g)} \rangle_t - \langle E_{32H_2O/Pt(111)} \rangle_t$$

(We estimate changes in entropy and zero point energy)

MD on interfaces with different number of *OH

Also investigated n_{OH} = 2, 4, 6, 8, 9, and n_{O} = 4

Constructed from:

Reaction free energies

 $n_{OH} H_2O(I) \rightarrow n_{OH} *OH + n_{OH} \frac{1}{2}H_2(g)$

Computational hydrogen electrode

 $G(\mathsf{H}^+(\mathsf{aq}) + e^-) \approx \frac{1}{2}G(\mathsf{H}_2(\mathsf{g})) - eU$

Cyclic voltammetric of Pt(111) in

0.1 M HClO₄

A. M. Gómez-Marín, *et al.*, *J. Electroanal. Chem.* **2013**, *688*, 360-370.

12 14

10

Height (Å)

0.0

"Costly" insight

The amount of sampling required for high accuracy only becomes apparent after extensive sampling

Initial thermalization

Initial "thermalization" often takes ~20 ps

Trapped in unfavorable minimum

Liquid water is a "glass" with many local potential energy minima

The average energy in ~50 ps MD run may depend on the initial conditions (the system is "stuck" in the local minimum where it started)

Such as $H^* \rightarrow H^+(aq) + e^-$

Such as $H^* \rightarrow H^+(aq) + e^-$

If irreversible, the free energy has decreased

$$F_{after} < F_{before}$$

(The "rare event" should happen after some simulation time to not be caused by initialization)

If reversible

$$\Delta F(A \rightarrow B) = -k_{\rm B}T \ln \frac{\sum \tau_{\rm B}}{\sum \tau_{\rm A}}$$

(From probability distribution, i.e. ratio of time spend in each state)

Probing the free energy profile of reactions from the required work

Thermodynamic integration

 $\Delta F(A \rightarrow B) = - \int_{0}^{q_B} \langle f(q) \rangle_t dq$ $q_{\rm A}$ Free energy Β

Reaction coordinate, q

Metadynamics

Probing the free energy profile of reactions from the required work

Thermodynamic integration

Metadynamics

 $\Delta F = -h \sum_{j} \exp\left(\frac{-(q_{j} - q)^{2}}{2w^{2}}\right)$

Reaction coordinate, q

*Multiple reaction coordinates are possible. There are several other methods.

T. Bucko, J. Phys. Condens. Matter, 2008, 20 (6), 64211. (VASP implementation)

Example

NaCl dissolution in liquid water studied with metadynamics

L.-M. Liu, A. Laio, A. Michaelides, Phys. Chem. Chem. Phys., 2011, 13,13162-13166

Dissolution mechanism

Initial dissolution step (is Cl⁻ solvation)

Free energy (metadynamics) with CI height used as reaction coordinate.

Dissolution mechanism

Initial dissolution step (is Cl⁻ solvation)

Free energy (metadynamics) with Cl/Na height used as reaction coordinate.

Example

O₂ adsorption-solvation barriers at liquid water-Pt(111) studied with metadynamics

H. H. Kristoffersen, et al., In preparation

Can $O_2(aq)$ access the surface of the 2OH + 30 H_2O / Pt(111) interface?

The height of O₂ above Pt(111) is used as reaction coordinate

The height of O₂ above Pt(111) is used as reaction coordinate

Atomic densities with O₂ at the transition state

The height of O₂ above Pt(111) is used as reaction coordinate

Decomposition of the free energy (ΔE from normal MD simulations)

	O ₂ (2 Å)	O ₂ (4 Å)	O ₂ (7 Å)	O ₂ (g)
ΔG	-0.3 eV	+0.3 eV	0 eV	
ΔE	-0.6 eV	-0.1 eV	-0.1 eV	0 eV
-T∆S	+0.3 eV	+0.4 eV	+0.1 eV	

Entropy barrier!

Summary

Ab initio molecular dynamics

Necessary because liquids are not ground state structures

Can provide energy differences / reaction energies

$$\lim_{M \to \infty} \frac{1}{M} \sum_{j=1}^{M} E_j = \langle E(T_0) \rangle_{canonical}$$

Liquid water is different from ice-like water, example water-Pt(111)

Rare event sampling

Methods like metadynamics provide free energy profiles of rare events / reactions

Importance of van der Waals correction

optB88-vdW Includes van der Waals correction

PBE no van der Waals correction

Catechol is very solvable

31.2g catechol per 100g water at 20°C

Energy favorable solvation

Energy unfavorable solvation