Scaling-up: Lab to Industry
The importance of scaling
Focusing: scaling of the electrochemical reactor
A little bit about myself
Topics

- Electrochemical cells
- Key factors in scaling
- Electrochemical cell scale-up
 - Geometric
 - Kinematic
 - Thermal
 - Current/potential
- Balance of Plant (BoP)
- Economic impacts
Topics

- Electrochemical cells
 - Key factors in scaling
 - Electrochemical cell scale-up
 - Geometric
 - Kinematic
 - Thermal
 - Current/potential
 - Balance of Plant (BoP)
 - Economic impacts
Electrochemical cells - Industrial types

Flow by
Flows by 2D electrodes; possibly separated

Flow through
Flows through a porous separator or electrode pack

Flow cells
2D electrode
One electrolyte
One product
Electrochemical cells - Industrial types

Flow by
Flows by 2D electrodes; possibly separated

Flow through
Flows through a porous separator or electrode pack

Flow cells
- 2D electrode
- One electrolyte
- One product

Membrane
- Membrane separation
- Pure products
- 2 possible product streams

Diaphragm
- Diaphragm separation
- Less pure product
- 2 possible products
- More robust
Electrochemical cells - Industrial types

Flow by
Flows by 2D electrodes; possibly separated

- **Flow cells**
 - 2D electrode
 - One electrolyte
 - One product

- **Membrane**
 - Membrane separation
 - Pure products
 - 2 possible product streams

- **Diaphragm**
 - Diaphragm separation
 - Less pure product
 - 2 possible products
 - More robust

Flow through
Flows through a porous separator or electrode pack

- **Plug flow cells**
 - 3D electrodes – sponges
 - One electrolyte
 - One product
Electrochemical cells - Industrial types

Flow by
Flows by 2D electrodes; possibly separated

Flow cells
2D electrode
One electrolyte
One product

Membrane
Membrane separation
Pure products
2 possible product streams

Diaphragm
Diaphragm separation
Less pure product
2 possible products
More robust

Gas diffusion
High surface area
Pure products
2 possible product streams

Plug flow cells
3D electrodes – sponges
One electrolyte
One product

Flow through
Flows through a porous separator or electrode pack
Electrochemical cells - Processing

- Batch/Continuous
 - Recycle
- Series/Parallel electrolyte flow
Electrochemical cells - Processing

- Batch/Continuous
 - Recycle
- Parallel/series electrolyte flow
- Bipolar/Monopolar electrical connections (ex. 2 cells, 3V/cell at 5kA/m², 1.5m² cell area)
 - Bipolar – Voltage is added and Amperage stays constant
 - \((5\times1.5)\times(3+3) = 45kW\)
 - Monopolar: Amperage is added and voltage stays constant
 - \(((5+5)\times1.5)\times3 = 45kW\)
Electrochemical cells - Processing

- 2D/3D electrodes
 - High surface area to compensate for low current density reactions
Electrochemical cells - Processing

- 2D/3D electrodes
 - High surface area to compensate for low current density reactions
- Horizontal/vertical electrodes
Topics

- Electrochemical cells
- **Key factors in scaling**
- Electrochemical cell scale-up
 - Geometric
 - Kinematic
 - Thermal
 - Current/potential
- Balance of Plant (BoP)
- Economic impacts
Key scale factors

- Transport process theory
 - Heat conduction
 - Fluid flow
 - Molecular diffusion
 - Electrical charge transfer
Key scale factors

- Transport process theory
 - Heat conduction
 - Fluid flow
 - Molecular diffusion
 - Electrical charge transfer

- Chemical reactor theory
 - Rate constants
 - Transfer coefficients
 - Transport properties
 - Reactor dimensions
Topics

- Electrochemical cells
- Key factors in scaling

Electrochemical cell scale-up
- Geometric
- Kinematic
- Thermal
- Current/potential

- Balance of Plant (BoP)
- Economic impacts
Key Factors

Geometric
Geometric

- It is impossible to directly scale the reactor
- Increased gap between electrodes that increase the voltage
 - In 3D electrodes the potential can be unevenly distributed if the thickness is too large [or secondary reaction can take place]
 - This scaling element is always sacrificed to maintain the potential
Geometric

- It is impossible to directly scale the reactor
- Increased gap between electrodes that increase the voltage
 - In 3D electrodes the potential can be unevenly distributed if the thickness is too large [or secondary reaction can take place]
 - This scaling element is always sacrificed to maintain the potential
- Maintaining active area is most important to maintain the current density
 - Scale-up always utilizes multiple cells
 - A way to calculate this is to fix the current density, production and hours of operation of the electrode, then divide by the area of one cell to obtain the total cells.

where P is the production target, CD is the current density, Hrs is the number of hours of operation in 1 day, MW is the molecular weight, ε is the cell efficiency and n is the number of electrons for the formation of one molecule

$$m^2 = \frac{P}{CD \times hrs \times MW \times \frac{\varepsilon}{26.8 \times n}}$$

$\# cells = \frac{m^2}{\text{area of cell (m}^2\text{)}}$
Typical cell room

About 440 cell

~3m wide
Key Factors

Kinematics
Kinematic

- Flow distribution
 - Velocities in the cell should be maintained: gas/liquid flow loads
 - Pressure drop
 - Fluid hold up
 - Mass transfer capacities
Key Factors

Thermal
Joule effect heating is a large scale up effect
\[P \propto I^2 R \]
- Hard to control
- Cooling channels [fuel cells] are not possible when increasing the cell to 2.5-3m²
- Mitigated:
 - standardizing flow rates
 - cell area
 - bulk cooling
Key Factors

Current/Potential
Current/potential

- Constant gap required
- Wagner number will quantify this when scaling
 \[Wa = \left(\frac{k}{L} \right) \left(\frac{dV}{di} \right) \]
 \(L = \text{gap}; K = \text{electrolyte conductivity}; V = \text{cell potential}; i = \text{current density} \)
 - should be the same throughout the cell
- Better uniformity is attained by:
 - Higher conductivity of the electrolytes
 - Smaller gap
 - Balance between gas release and gap
 - Lower average current density
 - How current is delivered to the current collector
Questions at this time?
Topics

- Electrochemical cells
- Key factors in scaling
- Electrochemical cell scale-up
 - Geometric
 - Kinematic
 - Thermal
 - Current/potential

- Balance of Plant (BoP)
- Economic impacts
BoP - Materials

- Close attention needed to material compatibility
 - Material compatibility charts – SO MANY!
- Understand what is happening in the whole cell [micro/macro scale]
 - The electrode interface is important when using binder materials
- Test different plastics or rubbers for the system
 - Place a weighed sample in the same solution at the same temperature and see if it gains or loses weight over different time intervals.
BoP - Cell preparation and equipment

- Mounting the cell
 - Hydraulic press to ensure contact of all pieces of the cell
 - Mounting rigs to ensure the cells are closed and pressure/leak check before mounting into the cell room (some designs do not allow this)

- Electricity to the cell
 - Rectifiers
 - Copper bussing
BoP - Up-stream processing

- Purity is a big deal in electrochemical processing to commodity chemicals.
 - Water
 - Dry chemicals
 - Gases
- When dealing with waste waters this may not be necessary, as it depends on the way you decide to treat them [indirect or direct].
BoP – Down-stream processing

- **WATER**
 - How much is there?
 - How much needs to be removed?
 - Can it be recycled?

- All DSP should be tested if you are planning on scaling
 - Find partners that are experts in the field of the process

- Always have choices.
 - Pick 2-3 companies in the field and have conversations with them all
 - Just because they are the best doesn’t mean they will have the time to give your company the attention you need.
BoP – Safety

- Waste treatment – sending to municipality
- Interlocks for voltages and flows
- Reactions
 - Out of control bulk reaction
 - Side reactions becoming dominate
- Electromagnetic field generation
Topics

- Electrochemical cells
- Key factors in scaling
- Electrochemical cell scale-up
 - Geometric
 - Kinematic
 - Thermal
 - Current/potential
- Balance of Plant
- Economic impacts
Economic impact of choices

- Current efficiency and purity in the electrochemical cell VS cost
 - Economics for more cells vs cheaper downstream processes – is it possible to purify with filters? Or concentrate with RO or filters?
Economic impact of choices

- Current efficiency and purity in the electrochemical cell VS cost
 - Economics for more cells vs cheaper downstream processes – is it possible to purify with filters? Or concentrate with RO or filters?
- Is the direct chemical process cheaper? Why?
 - E-chem will be hard to compete as it is energy intensive, but the produce is more likely to be pure
 - What is the case for this process to be better?
 - What can make it cheaper?
Thank You!!

Presented by:
Julia L. Krasovic
e. Julia.Krasovic@Avantium.com