

Electron-proton transfer theory and electrocatalysis

Part II

Marc Koper ELCOREL Workshop

Haarlem 1789

First experiment on water electrolysis by Paets van Troostwijk and Deiman: Water plus electricity produces hydrogen and oxygen

Museum Boerhaave, Leiden

"Sur une manière de décomposer l'Eau en Air inflammable et en Air vital" <u>A. Paets van Troostwijk, J.R. Deiman, Obs. Phys. 35 (1789) 369</u>

M.T.M.Koper, H.A.Heering, in "Fuel Cell Science", Eds. A.Wieckowski, J.K.Nørskov, Wiley (2010), p.71-110

Catalysis of multi-step reactions

Practically every (interesting) chemical reaction happens in a series of steps; catalysis is about optimizing that sequence

1 e⁻ / 1 step / 0 intermediate 2 e⁻ / 2 steps / 1 intermediate >2 e⁻ / >2 steps / >1 intermediate

Single electron transfer

- Marcus Theory
- Activation energy determined by solvent reorganization energy λ (a difficult quantity to calculate accurately)
- Marcus Theory does not account for bond breaking, proton transfer, or catalysis.

C.Hartnig, M.T.M.Koper, J.Am.Chem.Soc. 125 (2003) 9840

Multiple electron transfer

• Electrons transfer one-by-one, implying storage of charge and the existence of intermediates.

· Electrocatalysts optimize the energy of intermediates

Two electron transfer

 $2 H^+ + 2 e^- \leftrightarrows H_2$

Thermodynamics

$$2 H^{+} + 2 e^{-} \leftrightarrows H_{2}$$

$$E^{0} = 0 V$$

$$H^{+} + e^{-} \leftrightarrows H_{ads}$$

$$E_{1}^{0} = -\Delta G_{ads}(H)/e_{0}$$

$$H_{ads} + H^{+} + e^{-} \leftrightarrows H_{2}$$

$$E_{2}^{0} = \Delta G_{ads}(H)/e_{0}$$

Thermodynamic restriction: $(E_1^0 + E_2^0)/2 = E^0$

Potential-determining step

The potential-determining step is the step with the least favorable equilibrium potential

The difference in the equilibrium potential of the potential-determining step and the overall equilibrium potential is the *thermodynamic overpotential* η_T

Thermodynamic volcano plot

R.Parsons, Trans.Faraday Soc. (1958); H.Gerischer (1958) J.K.Nørskov et al., J.Electrochem.Soc. (2004) M.T.M.Koper, H.A.Heering, In Fuel Science Science M.T.M.Koper, E.Bouwman, Angew.Chem.Int.Ed. (2010)

Side notes

- · Can be generalized to other mechanisms
- The optimal electrocatalyst is achieved if each step is thermodynamically neutral: the H intermediate must bind to the catalyst with a bond strength equal to ½ E(H-H)
- Barriers are not included but if one believes in a relation between reaction energies and barriers (Bronsted-Evans-Polanyi) they are included implicity
- Analysis works equally well for metal surfaces, molecular catalysts, and enzymes
- · $\Delta G_{ads}(H)$ can be calculated from DFT

Experimental volcano for H₂ evolution

J.Greeley, J.K.Nørskov, L.A.Kibler, A.M.El-Aziz, D.M.Kolb, ChemPhysChem 7 (2006) 1032

More than 2 electron transfers

 $O_2 + 4 H^+ + 4 e^- \leftrightarrows 2 H_2O$ $E^0 = 1.23 V$

 $O_{2} + H^{+} + e^{-} \leftrightarrows OOH_{ads}$ $OOH_{ads} \leftrightarrows O_{ads} + OH_{ads}$ $O_{ads} + H^{+} + e^{-} \leftrightarrows OH_{ads}$ $OH_{ads} + H^{+} + e^{-} \leftrightarrows H_{2}O$

 E_1^0 ΔG E_2^0 E_3^0

The optimal catalyst

$$\Delta G(OH_{ads}) = C_0 = 1.23 \text{ eV}$$

$$\Delta G(O_{ads}) = 2 \times C_0 = 2.46 \text{ eV}$$

$$\Delta G(OOH_{ads}) = 3 \times C_0 = 3.69 \text{ eV}$$

$$\Delta G(O_2) = 4 \times C_0 = 4.92 \text{ eV}$$

Independent of the mechanism

However: scaling relationships

Figure 3.7 (a) Adsorption energy of HO^{*} as function of the adsorption energy of O^{*}, both on the terrace. The best linear fit is $E_{\text{HO}^*} = 0.50E_{\text{O}^*} + 0.05 \text{ eV}$. (b) Adsorption energy of HOO^{*} as function of the adsorption energy of O^{*}, both on the terrace. The best linear fit is $E_{\text{HOO}^*} = 0.53E_{\text{O}^*} + 3.18 \text{ eV}$.

For (111) metal surfaces

F.Abild-Petersen, J.Greeley, F.Studt, P.G.Moses, J.Rossmeisl, T.Munter, T.Bligaard, J.K. Nørskov, Phys.Rev.Lett. 99 (2007) 016105

F.Calle-Vallejo, J.I.Martinez, J.M.Garcia-Lastra, J.Rossmeisl, M.T.M.Koper, Phys.Rev.Lett. 108 (2012) 116103

The optimal scaling relations

$$\Delta G(OH_{ads}) \approx 0.50 \times \Delta G(O_{ads}) + 0.05 \text{ eV})$$

= 0.5 × \Delta G(O_{ads}) + K_{OH}
\Delta G(OOH_{ads}) \(\approx 0.53 \times \Delta G(O_{ads}) + 3.18 \text{ eV})
= 0.5 × \Delta G(O_{ads}) + K_{OOH}

Does optimal scaling exist?

Metals: $\Delta G(OH_{ads}) \approx 0.50 \times \Delta G(O_{ads}) + 0.05 \text{ eV}$ $\Delta G(OOH_{ads}) \approx 0.53 \times \Delta G(O_{ads}) + 3.18 \text{ eV}$

Oxides: $\Delta G(OH_{ads}) \approx 0.61 \times \Delta G(O_{ads}) - 0.90 \text{ eV}$ $\Delta G(OOH_{ads}) \approx 0.64 \times \Delta G(O_{ads}) + 2.03 \text{ eV}$

 $K_{OOH} - K_{OH} = 3.13 \text{ eV}, 2.93 \text{ eV}; \text{ Optimal} = 2.46 \text{ eV}$

M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254

"Fundamental" overpotential?

$$\gamma_T(\text{ORR,OER}) = \frac{K_{\text{OOH}} - K_{\text{OH}}}{2 \text{ e}} = \sim 0.35 \text{ V}$$

One does not even need to know the catalyst-oxygen interaction...

$$\Delta G[HO_2(aq)] - \Delta G[OH(aq)] = 3.4 \text{ eV}$$

I.Man et al. ChemCatChem 3 (2011) 1159 M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254 M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Volcano plot for >2 ET reaction

Hammer-Nørskov d-band model

Binding energy of atoms and molecules to a metal surface is strongly influenced by the location of the energy of (the center of) the d band. Higher d band: stronger binding

 $\varepsilon_{d}(eV)$

How to vary the *d* band?

- By varying the chemical composition of the catalyst (transition metal elements to the upper left in the PT have a higher *d* band)
- By varying the structure of the catalyst (surface sites with a low coordination have a higher *d* band, they often are the active sites!)
- By varying the surface potential (electronic promoting, electrode potential)

Proton-coupled electron transfer

$2 H^+ + 2 e^- \leftrightarrows H_2$

$O_2 + 4 H^+ + 4 e^- \leftrightarrows 2 H_2O$

$CO_2 + 6 H^+ + 6 e^-$ $\Box CH_3OH + H_2O$

- Are proton and electron transfer always coupled?
- How does (de-)coupled proton-electron transfer manifest?

Proton-coupled electron transfer

S. Hammes-Schiffer, A.A.Stuchebrukhov, Chem.Rev.110 (2010) 6939 M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399

Proton-coupled electron transfer

M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399 M.T.M.Koper, Chem.Sci. 4 (2013) 2710

pH dependence of decoupled PCET

M.T.M.Koper, Chem.Sci. 4 (2013) 2710; Top.Catal. 58 (2015) 1153 J.Yang, P.Sebastian, M.Duca, T.Hoogenboom, M.T.M.Koper, Chem.Comm. 50 (2014) 2148 Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, J.Am.Chem.Soc. 133 (2011) 6914

Formic acid oxidation on Pt

Formic acid oxidation prefers intermediate pH

J.Joo, T.Uchida, A.Cuesta, M.T.M.Koper, M.Osawa, J.Am.Chem.Soc. 135 (2013) 9991

PCET of NH₃ oxidation on Pt(100)

I.Katsounaros, T.Chen, A.A.Gewirth, N.M.Markovic, M.T.M.Koper, J.Phys.Chem.Lett. 7 (2016) 387

pH dependence of OER on NiOOH

O.Diaz-Morales, D.Ferrus-Suspendra, M.T.M.Koper, Chem.Sci. 7 (2016) 2639 B.J. Trześniewski, O.Diaz-Morales, D.Vermaas, O.Longo, W.Bras, M.T.M.Koper, W.Smith, J.Am.Chem.Soc.137 (2015) 15112

Oxygen exchange in OER on Co-based perovskites

O₂ formation from ¹⁸O-labeled oxides followed by online MS

High O *2p* band leads to oxygen redox chemistry and oxygen exchange during OER

A.Grimaud, O.Diaz-Morales, B.Han, W.T.Hong, Y-L.Lee, L.Giordano, K.A.Stoerzinger, M.T.M.Koper, Y.Shao-Horn, Nature Chem. (2017)

pH dependent OER on Co-based perovskites

Oxygen redox chemistry leads to charged surface oxides

A.Grimaud, O.Diaz-Morales, B.Han, W.T.Hong, Y-L.Lee, L.Giordano, K.A.Stoerzinger, M.T.M.Koper, Y.Shao-Horn, Nature Chem. (2017)

Electrocatalytic CO₂ reduction

Reversibility is possible

Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.

T.Reda, C.J.Plugge, N.J.Abram, J.Hirst, Proc.Nat.Acad.Sci 105 (2008) 10654

CO₂/HCO₃⁻ reduction to formic acid

CO₂ and bicarbonate reduction on a Pd-Pt formic acid oxidation catalyst

R.Kortlever, C.Balemans, Y.Kwon, M.T.M.Koper, Catal.Today 244 (2015) 58 R.Kortlever, I.Peters, S.Koper, M.T.M.Koper, ACS Catal. 5 (2015) 3916

CO and **CO**₂ reduction on copper

Y.Hori, Mod.Asp.Electrochem (2008)

K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. (2011)

CO reduction on Cu(111) and Cu(100)

K.J.P.Schouten, Z.Qin, E.Perez Gallent, M.T.M.Koper, J.Am.Chem.Soc. 134 (2012) 9864

A consistent mechanism

WILEY-VCH

K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. 2 (2011) 1902 F.Calle Vallejo, M.T.M.Koper, Angew.Chem.Int.Ed. 52 (2013) 7282 R.Kortlever, J.Shen, K.J.P.Schouten, F.Calle-Vallejo, M.T.M.Koper, J.Phys.Chem.Lett. 6 (2015) 4073

(CO)₂ prefers Cu(100) sites

H.Li, Y.Li, M.T.M.Koper, F.Calle-Vallejo, J.Am.Chem.Soc. 136 (2014) 15694

Steering selectivity to ethylene

Lowering buffering capacity leads to higher alkalinity near electrode surface

CO₂ reduction on Co-porphyrin

J.Shen, R.Kortlever, R.Kas, Y.Y.Birdja, O.Diaz-Morales, I.Ledezma-Yanez, Y.Kwon, K.J.P.Schouten, G.Mul, M.T.M.Koper, Nature Comm. 6 (2015) 8177

pH dependent selectivity

J.Shen et al., Nature Comm. 6 (2015) 8177

Predicting the pK_a of intermediates

 $CO_2 + H^+ + e^- + * \Leftrightarrow *COOH \quad E = -0.43 \text{ V} (vs.RHE)$

A.J.Göttle, M.T.M.Koper, Chem.Sci. 8 (2017) 458

Conclusions

- \cdot Try to transfer 2 electrons at a time
- If you insist on transferring more than 2 electrons with 1 catalyst, be prepared to deal with scaling relationships...
- Unfavorable scaling between OOH and OH leads to irreversible kinetics of the oxygen electrode
- Proton-decoupled electron transfer leads to strong pH dependence of catalysis
- Each PCET reaction has an optimal pH, and an optimal catalyst at the optimal pH
- · CO_2/CO electro-reduction is pH dependent